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Abstract 

 

  This study developed a multi-disciplinary conceptual design of a joined-wing sensor-craft.  

Initial analysis was conducted using an aluminum model.  Linear fully stressed design and flexible 

aerodynamic trim were used to converge to a minimum weight design that was aerodynamically 

stable.  This optimized design was buckling safe.  A similar optimization process using non-linear 

fully stressed design and flexible aerodynamic trim was conducted.  The non-linear structural 

deformation was over ten times greater than the linear structural deformation.  Again, the model 

was structurally and aerodynamically optimized.  The linear optimization was repeated using a 

composite structural model incorporating Conformal Load-bearing Antenna Structures.  This 

research demonstrated the importance of considering non-linearity and the coupling of 

aerodynamic and structural design.  
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SENSOR-CRAFT ANALYTICAL CERTIFICATION 
 
 
 

I.  Introduction 
 
 

Overview 

Sensor-craft is a conceptual unmanned air vehicle (UAV) based on an Air Force need for 

advanced, long-endurance tactical surveillance using current and future sensor technologies.  The 

Air Force Research Laboratory, Air Vehicles Directorate, leads the sensor-craft conceptual 

design study.   

A potential vehicle design is a joined-wing configuration that could lead to improved radar 

capabilities, increased aerodynamic performance, and structural weight savings.  A typical joined-

wing aircraft has a large lifting surface, named the aft-wing, connecting the top of the vertical tail 

structure to the main wing of the vehicle.  The aft-wing is usually swept forward and down to 

attach the two structures (Fig. 1-1,1-2).  
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Figure 1-1.  Top View of Proposed Joined-Wing Geometry 

 
Figure 1-2.  Isometric View of Proposed Joined Wing Geometry 
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The aft-wing acts as a support strut for the cantilevered main wing to relieve bending 

moments.  The aft-wing undergoes axial compression throughout most of the flight regime.  This 

compression may cause the aft-wing to buckle.  Studies have proposed that the increased 

structural weight to prevent aft-wing buckling might negate any performance benefits gleaned from 

the joined-wing configuration [1]. 

 The proposed sensor-craft wing span is over 180 feet and the chord of the main wing is 

approximately eight feet.  Under normal flight conditions this wing experiences large bending 

deformations.  Linear finite element analysis is an approximation method that is only valid for 

relatively small displacements.  The large deflections of the joined-wing require non-linear finite 

element analysis method for accurate results. 

 The large wing deformation also causes a significant change in the aerodynamic pressure 

distribution.  A method to calculate the pressure distribution of a deformed aerodynamic model is 

used in this research.  This method is included in the overall process to achieve an 

aerodynamically trimmed aircraft. 

 The current proposed sensor-craft design incorporates radar antennae in the forward and 

aft-wings.  This provides a very large aperture, enabling UHF surveillance.  This radar frequency 

is required for foliage penetration (FOPEN) which allows the radar to image a target beneath a 

canopy of vegetation [2].  As a proposed weight savings, the antenna elements are built into the 

composite wing structure.  This Conformal Load-bearing Antenna Structure (CLAS) is a 

composite sandwich of Graphite/Epoxy, Carbon foam core, and an Astroquartz skin covering 

(Figure 1-3).  Antenna elements are attached to the graphite/epoxy layers.  The Astroquartz 
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provides environment protection and an electro-magnetically clear material for the radar to 

transmit through. 

Graphite/Epoxy

Carbon Foam

Astroquartz

 

Figure 1-3.  Conformal Load-bearing Antenna Structure Cross Section 

 Adaptive Modeling Language (AML) allows a user to develop a geometric model that 

contains all necessary information needed to perform multi-disciplinary analysis [3].  The Air 

Vehicles Technology Integration Environment (AVTIE) is software developed by Dr. Max Blair 

[4].  AVTIE contains the sensor-craft geometric model.  It enables the designer to develop the 

aerodynamic and structural models.  AVTIE also performs aerodynamic trim calculations. 

 Due to the long-endurance requirement, sensor-craft contains a large amount of fuel mass 

at the beginning of the mission.  The large fuel mass provides inertia relief to the wing structure.  

The inertia relief helps reduce the amount of deformation caused by the lift generated during flight. 

However, near the end of the mission, there is very little fuel mass available to counteract lifting 

forces or accelerations caused by gusts.  Therefore, the aircraft structure tends to experience 

higher stresses at the end of the mission than at the beginning. 
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Research Objectives 

This research achieved a weight optimized sensor-craft structural model that was 

aerodynamically trimmed and did not buckle or become overstressed during the flight regime.  

Two models were optimized, one entirely aluminum and one incorporating CLAS and 

graphite/epoxy material.  This research investigated the non-linearity due to large deformations 

and developed a method to incorporate non-linear analysis into the conceptual design process.  In 

addition, aerodynamic and structural interaction in the model was demonstrated.  Also, this study 

developed an estimate of reliability to quantify the uncertainties in the material properties.   

Research Focus  

 This research focused on developing a cross-disciplinary approach to aircraft design.  

Aerodynamic analysis and structural optimization were combined to develop a minimal weight 

aircraft configuration that is aerodynamically trimmed throughout the mission.  This research 

recognizes the need to include non-linear structural analysis due to large deformations. 

Methodology Overview 

Analysis using high fidelity FEM based modeling techniques and aerodynamic panel 

methods was executed to optimize a joined-wing configuration for the required sensor-craft 

mission.  Linear fully stressed design using flexible aerodynamic loads at selected mission points 

was accomplished.  The aircraft was aerodynamically trimmed during this design process.  Linear 

analysis continued with various flexible aerodynamic load cases and considered buckling of the 

aft-wing as a critical design constraint.  Optimizing the skin thickness may decrease aircraft weight 

depending upon stress requirements. 
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This study also analyzed a non-linear, fully stressed design of the joined-wing 

configuration for the same mission load cases as the linear analysis.  Currently available 

commercial software packages are not capable of resizing a non-linear FEM.  An algorithm is 

developed in MATLAB code [5] and incorporated into the existing Adaptive Modeling Language 

(AML) software suite, which provides a geometric interface between MSC.NASTRAN finite 

element software [6] and PanAir aerodynamic software [7].  Non-linear design allows the aft-

wing to undergo large deformation without structural failure.  The tailored non-linear response of 

the aft-wing was incorporated in trim optimization. 

The model was first optimized using an aluminum model.  This optimized model provided 

a baseline for comparison to the composite model.  It also allowed the researcher to validate the 

linear and non-linear optimization methods with a simplified model before developing the more 

complex composite design model. 

The optimal material distribution was achieved for the minimum weight for a fixed 

configuration in both the aluminum and composite models.  Stochastic analysis methods were 

applied to quantify the level of confidence in the buckling loads and stresses based on estimates 

and assumptions made during the course of this study.  Uncertainties in the composite material 

properties must be considered since the aircraft wing incorporates a Conformal Load-bearing 

Antenna Structure (CLAS) within the composite wing structure.  The material properties for this 

composite have not been thoroughly studied.  These uncertainties are modeled using Gaussian 

randomness in the Young’s modulus throughout the joined-wing.  Stochastic sensitivity to the 

Young’s modulus is examined for the aluminum joined-wing structure. 
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Assumptions and Limitations 

 For the deterministic analysis of the aluminum model, a factor of safety of 1.5 was applied 

to the Von Mises allowable stress in the linear optimization method.  In the non-linear optimization 

a factor of 1.5 was applied to the applied loads and no factor of safety is applied to the Von 

Mises allowable stress.  This method allowed the NASTRAN non-linear analysis to provide a 

complete analysis, and ensureed safe performance up to 150% of the design load. 

 The leading edge skin and rib elements that are forward of the front spar were not 

optimized.  This is also true for the skin and rib elements aft of the rear spar.  These elements are 

not included in typical wing design models because they are not primary load bearing members.  

In this model, the un-designed skin elements were set to a minimum gage thickness and the un-

designed rib elements were set to a value that is sufficiently thick to transfer any aerodynamic 

loads into the wing box. 

 Due to the method AVTIE uses to create the structural model, the wing substructure is 

highly redundant.  The initial design philosophy was to allow the optimization process to determine 

the best load path by minimizing the redundant structure [4].  Each wing contains eight spars when 

a typical wing design uses only two or three spars.  Also, the wing-joint and outboard wing 

include spars from both the forward and aft-wings.  Thus, the outboard wing contains sixteen 

spars.  The spars in the forward and aft-wings are designed with a minimum gage of 25% of the 

skin minimum gage thickness.  It is assumed that the total optimized spar thickness can be 

combined into a forward and aft-spar for each wing. 
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 For the composite model, a graphite/epoxy maximum strain allowable of 5000µε [8] with 

a factor of safety of 1.5 was used in the linear optimization method.  The wing substructure 

remained aluminum in this model and was included in the optimization process with the Von Mises 

allowable stress for aluminum.  The non-linear optimization used the maximum strain allowable 

with a factor of 1.5 applied to the applied loads. 

 The CLAS material was included as the upper and lower surfaces of the forward and aft-

wings.  The Astroquartz is a relatively weak material (6.80 Msi) [8] and was not included in the 

optimization method.  Also, the foam core sections are primarily for radar element spacing 

requirements and were not designed.  Each graphite/epoxy layer in the CLAS material is an 

optimum stacking sequence developed by Northrop Grumman [8].  Thicknesses of the 

graphite/epoxy plies were determined in the design optimization as necessary to accommodate the 

applied loads.   

Similar to the aluminum model, the skin and rib elements outside the wing box were not 

optimized.  The un-designed skin material is Astroquartz.  The leading and trailing edges must be 

electro-magnetically clear to allow radar transmission. The wing-joint and outboard wing skins are 

graphite/epoxy.  The entire substructure is also graphite/epoxy with the same minimum gage limits 

as the aluminum model.   

 The structural NASTRAN model was analyzed using a clamped boundary condition at 

the forward and aft-wing roots.  Ideally, the model would be analyzed using a free-free boundary 

condition that would include inertia relief due to aircraft structural mass, payload mass, and fuel 

mass.  However, the fuel mass can only be included using non-structural mass elements in 
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NASTRAN.  When conducting optimization using multiple mission points, NASTRAN is unable 

to use multiple sets of non-structural mass elements to define the different fuel mass at each 

mission point.  AVTIE develops gravity forces due to the mass of each structural element and fuel 

mass.  These forces develop a load case comparable to the free-free boundary condition. The 

clamped boundary condition and the free-free conditions of a single load case were compared to 

validate the use of the simplified boundary conditions. 

 A concurrent study is underway to incorporate aerodynamic results from MSC.Flight 

Loads software into the AVTIE environment.  Flight Loads can trim the configuration and export 

the model directly to NASTRAN.   The Flight Loads and PanAir panel methods will be 

compared elsewhere with a Euler/Navier-Stokes CFD code for validation [9]. 

Implications 

 This multi-disciplinary approach to aircraft design provides a method that encompasses all 

aspects of the conceptual design process.  This allows a designer to observe and incorporate the 

interactions of structural and aerodynamic effects.  AVTIE also allows the researcher to study the 

magnitude of non-linearity due to large deformations.  This research demonstrated the ability to 

integrate multiple iterative processes into a single optimization method.  Potentially, AVTIE is 

capable of developing an optimized conceptual design for any aircraft configuration. 

Preview of Results 

 Initial linear optimization demonstrated aerodynamic and structural convergence to an 

optimized design (Table 4-1).  The mass redistributed to a similar optimized material distribution 

as described by Wolkovich [10] (Figures 4-4, 4-5).     
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Because the aft-wing is closely aligned with the joined-wing plane, the material distribution 

is very close to the optimal structure proposed by Wolkovich.  Non-linear optimization exhibited 

similar material distribution. The composite model also optimized to a similar mass distribution. 

 Non-linear analysis exhibited larger deformations and higher stresses than linear analysis.  

The non-linear analysis also demonstrated that the model behaved in a non-linear fashion well 

below the first buckling eigenvalue. 

Preview of Conclusions 

 The model is highly coupled between aerodynamic loads, structural deformation, and 

aerodynamic trim.  This sensor-craft configuration behaves as a non-linear structure below the 

first buckling eigenvalue. 

 

 
 
 
 
 
 
 
 

II. Literature Review 

Introduction 

This chapter summarizes the relevant joined-wing structural and aerodynamic research 

already accomplished.  First, it reviews the advantages gained with this design and highlights some 

of the structural nuances of the joined-wing. Next, the chapter highlights the issues encountered in 

designing such an aircraft.   
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This chapter discusses past research in the areas of non-linear structural analysis and 

structural optimization.  It also makes note of differences between the past research and this 

current thesis.  In addition, this chapter reviews a proposed method of aerodynamic and structural 

optimization. The chapter continues with an overview of a preliminary stochastic analysis of a 

joined-wing.  The chapter concludes by describing the sensor-craft configuration that this thesis 

research builds upon. 

Past Joined-Wing Design Work 

Julian Wolkovich proposed a joined-wing design in 1976 [11].  In a later study, he 

claimed the design provided potential weight savings and aerodynamic benefits [10].    In addition 

to a lighter aircraft weight, Wolkovich claimed a properly designed joined-wing would have 

reduced induced drag, high maximum lift coefficient (CLmax ), lower parasitic drag, and improved 

stability and control characteristics [10].   

Wolkovich observed that the lifting forces of the forward and aft wings can be resolved 

into forces normal to and parallel to the structure of the joined-wing (Fig. 2-1).  The force normal 

to the plane containing the forward and aft-wing structure causes a bending moment about the z-

axis.   
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With a vertical force applied to the joined-wing, the forward wing tip displaces in the 

positive z-direction and the negative x-direction.  The bending axis becomes aligned 

perpendicularly to the plane of the joined-wing structure, that is, the plane containing the span-

wise axes of the forward and aft-wings.  In an optimum cantilever design, structural material is 

located away from the neutral axis.  This increases the moment of inertia and decreases bending 

stress.  Typically, this requirement creates a wing box structure of constant thickness at each 

cross section [10].  The joined-wing also requires structural material to be placed away from the 

neutral surface to relieve stress.  However, placing material at the maximum offset distance 

possible creates a wing box structure that is thicker at the upper leading edge and lower trailing 

edge (Fig. 2-2).   

LIFT

joined-wing
plane

Normal

Force

Figure 2-1.  Normal Force in Joined-Wing Plane  [10] 
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Figure 2-2. Optimal Joined-Wing Structure vs. Cantilever Wing Structure 

An optimized joined-wing structure resists bending with a thinner airfoil than a cantilever 

wing box structure.  The thinner airfoil also creates less induced drag.  Wolkovich cautions that a 

thin aft-wing is more likely to experience column buckling than a thicker wing. 

 Wolkovich compared the available fuel volume in a joined-wing to that of conventional, 

cantilevered wings.  Because of the additional volume available in the aft-wing, the joined-wing 

potentially contained 150% of the fuel available in a conventional design [10].  This could allow 

the joined-wing greater range and endurance. 

 Structural optimizations of the sensor-craft model display the increased material thickness 

in the upper leading edge and the lower trailing edge.  The model also exhibits the negative-x 

deflection noted by Wolkovich.  The success of sensor-craft depends on the ability to remain aloft 

for over forty-eight hours.  This drives the fuel mass requirement much higher than a conventional 

aircraft. 

 Conventional Wing Box

 Optimal Joined-Wing

 Neutral Axis
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Samuels continued Wolkovich’s earlier studies to validate the potential weight savings of a 

joined-wing over a conventional aircraft [12].  She compared two joined-wing configurations to a 

Boeing 727 design.  The joined-wing configurations were identical except the minimum skin 

thickness.  All models used aluminum structural material.  The joined-wing cases were structurally 

optimized for a 2.5-G load case, with a 1.5 factor of safety, using allowable Von Mises stress as 

the design criterion [12]. Optimized, the joined-wing models exhibited the thickening of the upper 

leading edge and lower trailing edge.  The optimization study indicated that both joined-wing 

cases were lighter than the conventional aircraft design [12].  Although the joined-wing models 

were lighter, Samuels cautions that the designs were selected as a comparison to the Boeing 727 

and may not be the best joined-wing design.  Samuels did not include buckling as a design 

constraint, nor did her research consider non-linearities caused by large deformations in the finite 

element model. 

 This sensor-craft study investigates one configuration for a specific, long endurance 

mission.  In this current study, the minimum gage thickness is set at 0.040 in. for the aluminum 

cases based on standard aircraft aluminum manufacturing practices [13].  Samuels, used 0.125 in. 

and 0.070 in. as minimum gage thickness.  The larger minimum gages may have prevented a fully 

optimized design. 

In 1984, the NASA Ames Research Center initiated research into the possibility of 

building a joined-wing airplane [14].  NASA designed the aircraft to be a manned, proof-of-

concept demonstrator.  The requirement of human survivability dictated the requirement to create 

good handling qualities. Smith et al. observed the joined-wing configuration reduces the bending 
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moment of the forward-wing, and calculated the span efficiency to be higher than 1.0 [14].  The 

span efficiency is the ratio of the induced drag created by an elliptical lift distribution to the 

induced drag created by the actual lift distribution [14].  This increased efficiency validated the 

earlier claim of reduced drag [10]. The researchers discovered that even with extensive 

aerodynamic design, the one-sixth-scale wind tunnel model exhibited an unstable stall 

characteristic [14].  The scale model also had reduced lateral stability above the stall angle-of-

attack.  The stall characteristic was improved with vortilions installed on the wind tunnel model, 

but a full-scale flight test vehicle was never built.  It should also be noted that there was no 

structural optimization design performed.  Where buckling was predicted, the tail structure was 

strengthened with additional material [14]. 

Extending the research for the NASA Ames feasibility study, Lin, Jhou, and Stearman 

examined the joint configuration using the NASA wind tunnel model [15].  The researchers 

studied eight different joint models on a joined-wing wind tunnel model similar to the NASA 

aircraft. They employed linear Finite Element Modeling (FEM) analysis and experimental analysis 

on the one-sixth-scale wind tunnel model. This study also used a simplified FEM model 

incorporating CBEAM and QUAD4 elements.  The MSC.NASTRAN analysis indicated a lower 

root bending moment than the experimental results.  The authors attributed this difference to the 

absence of friction in the finite element model [15]. They discovered that the best joint designs are 

a rigid joint or a pinned joint with the z-axis free to rotate [15].  The sensor-craft configuration in 

this thesis research uses a rigid joint configuration. 

Work of Gallman and Kroo 
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 Kroo et al. developed a method to optimize a joined-wing configuration for 

aerodynamic and structural characteristics using several design variables [16].  Their method used 

a vortex-lattice aerodynamics code to trim the joined-wing aircraft for a minimum drag condition.  

The method then used a finite element code to optimize the design for minimum weight [16].  They 

also included an asymmetric wing box structure similar to the design proposed by Wolkovich.  In 

all configurations studied, the aft-wing carried a negative lift load to achieve a trimmed flight 

condition.  This negative lift cancelled the expected reduction in induced drag.  “…Induced drag 

reductions are only possible when the aft surface carries a significant upload” [16].  By varying the 

location of the wing-joint, the authors realized a large reduction in weight when the wing-joint was 

placed at 70% of the forward-wing span [16].  Only linear FEM analysis was performed on the 

joined-wing design.  The authors state that the linear analysis was sufficient provided the structure 

did not undergo large deformations or buckling [16].  They observed that in all cases the aft-wing 

carried a large compressive load and the forward-wing had a lower wing-root bending moment 

than a conventional wing [16].   The researchers stressed that future studies should include 

buckling analysis of the aft-wing. 

This sensor-craft research includes non-linear fully stressed design to incorporate large 

deflection analysis.  While Gallman and Kroo state that they performed an aerodynamic analysis, 

their paper does not mention achieving an aerodynamic trim condition for the structurally 

optimized model.  This thesis incorporates the aerodynamic analysis as part of the convergence 

processes.  This develops a minimum weight design that is also aerodynamically trimmed. 
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Later, Gallman and Kroo refined the aerodynamic analysis and compared their models to 

a McDonnell Douglas DC-9 conventional transport [17].  The researchers determined that the 

critical load conditions occurred during gust conditions that describe the flight envelope.  The 

joined-wing models used a 10% average thickness airfoil.  The Sensorcraft model studied here 

has a 15% average thickness airfoil.  Using direct operating cost as a design objective, they 

determined that the joined-wing model was more expensive to operate when buckling constraints 

were included in the design analysis.  Gallman and Kroo did not use non-linear structural design 

for potentially large deflections in this study.  They also incorporated a fuel tank in the aft wing to 

trim the center of gravity [17].  This sensor-craft research utilizes the fuselage payload mass to 

adjust the center of gravity and maintain a aerodynamically stable, mass-balanced condition 

throughout the mission profile. 

Gallman and Kroo also examined a joined-wing configuration to meet the mission 

requirements of a Boeing 727 transport aircraft [1].  They used a simplified aluminum wing box 

structure in the FEM analysis.  The authors determined that the gust during zero fuel condition was 

the most critical load case [1].  However, they do not mention the use of a gust alleviation factor 

to reduce the effective gust load.  This simplified model was optimized for a minimum weight using 

gradient-based design.  Next, they optimized the model again using fully stressed design and 

included the secondary bending moments to capture the non-linear effect [1].  When Gallman and 

Kroo included buckling as a design constraint in their gradient-based optimization analysis, the 

weight increased by 13%.  This led to a higher direct operating cost when compared to a Boeing 

727.  The fully stressed design with secondary bending moments did not include a margin of 
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safety [1].  They determined that the fully stressed design was comparable in weight to the 

gradient-based design but still higher in weight and direct operating cost than the conventional 

aircraft.  However, they conceded, “a different set of mission specifications and design 

assumptions may produce joined wings that perform significantly better”[1]. 

 Current sensor-craft research uses fully stressed design instead of gradient-based design 

due to the large number of design variables used.  NASTRAN non-linear finite element analysis 

data is combined with MATLAB fully stressed design algorithm to create a non-linear fully 

stressed design process.  Importantly, this research structurally optimizes a joined-wing model 

while maintaining aerodynamic trim.  Gallman and Kroo performed aerodynamic analysis, but did 

not integrate aerodynamic trim analysis within the optimization process.  

Integrated Structural and Aerodynamic Design 

Recently, Livne surveyed past joined-wing research to provide a direction for future 

studies [18].  He described how the joined-wing configuration creates complex interactions 

between aerodynamic loads and structures.  He also noted that slender beam models, such as the 

joined-wing configuration, should be modeled as non-linear structures to capture moderate to 

large deformations.  Livne advocated the use of a multi-disciplinary design approach to design 

aerodynamics and structures simultaneously [18].  

Blair and Canfield proposed an integrated design method for joined-wing configurations 

[4].  They chose the model configuration to meet the sensor-craft mission requirements.  The 

concept utilized the entire aft-wing as a control surface for pitch trim.  The aft-wing was twisted 
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through the use of an actuator in the vertical tail.  This created torsion in the aft wing and a twist 

angle that decreases from the root to the wing joint.  As in previous studies, Blair and Canfield 

used a rigid wing joint for the model.  Their concept started with an initial estimate of fuel required 

to complete the desired mission and a constant lift-to-drag ratio.  Next, they trimmed the aircraft 

for straight and level flight conditions throughout the mission.  The authors cautioned that a large 

angle-of-attack or aft-wing twist angle created excessive drag and should be avoided.  They also 

indicated that a negative lifting force on the aft-wing increased drag [4].  The aerodynamic loads 

and the trimmed configuration were used to perform a linear fully stressed design optimization in 

ASTROS finite element software.  The authors checked for buckling using NASTRAN.  This 

optimization resized the wing skin, rib and spar thickness to meet the allowable material stresses.  

The deflection of the wing caused a different lift distribution over the wings, which required a new 

trim configuration.  The deformed model was re-trimmed and the new aerodynamic loads were 

applied to the structural model [4].  

Blair developed a geometric model and user interface, known as Air Vehicle Technology 

Integration Environment (AVTIE) [4] using the Adaptive Modeling Language (AML)[3].  The 

AML model can be analyzed for structural or aerodynamic characteristics through external 

software.  Aluminum was used in their study although the sensor-craft will most likely use 

composite structure [4].  Similar to Gallman and Kroo [1], Blair and Canfield also recognized that 

a critical load occurs at the minimum fuel condition [4].  However, their load case assumed a 

steady 2.5G maneuver instead of a gust condition.  When the researchers analyzed buckling of the 

optimized model, they discovered that the forward-wing buckled beyond the applied 2.5G load, 
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but before the 1.5 factor of safety.  The aft-wing buckled in a non-trimmed condition.  They 

concluded that non-linear structural analysis is important to accurately capture the large 

deformations and buckling behavior that occur in this large joined-wing configuration.  Also, the 

authors discovered that for some critical buckling modes, the outboard wing tip becomes 

aerodynamically unloaded.  They noted this buckling as a possible means for creating a fail-safe 

design [4]. 

 This current research starts with the same model configuration as Blair and Canfield [4].  

However, multiple mission conditions are optimized and aerodynamically trimmed simultaneously.  

Gust loads develop higher load factors than steady load cases and are included in the 

optimization.  Linear fully stressed design and buckling analysis was performed using NASTRAN 

instead of ASTROS.  A MATLAB non-linear fully stressed design algorithm was used to capture 

large deformations.  This research heavily utilizes AVTIE for aerodynamic trim and model 

generation. 

Stochastic Analysis 

Petit, Canfield and Ghanem conducted a stochastic analysis on a joined-wing model 

developed by Blair and Canfield [19].  The buckling of the joined-wing was analyzed using 

NASTRAN.  Buckling analysis requires the solution to a linear eigenvalue problem.  The random 

Young’s modulus is a component of the stiffness matrix used for the buckling solution.  The 

authors modeled Young’s modulus as a Gaussian random variable at the wing-roots and the 

wing-joint.  These locations were expected to have the most critical influence in the buckling 

response of the joined-wing [19].  They conducted a Monte-Carlo simulation using 200 
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realizations of the random Young’s modulus at each location.  NASTRAN generated a buckling 

eigenvalue solution for each of the realizations, which estimated the random distribution of 

response.  The authors conducted a sensitivity study to examine the influence of each location on 

the overall buckling solution.  The initial eigenvalue solutions had a margin of safety greater than 

34%[19].  The Young’s modulus was significantly reduced at each location to increase the 

sensitivity.  However, the model exhibited very little sensitivity to reductions in the stiffness [19].  

The sensitivity study confirmed the author’s premise that the outboard wing joint would have the 

least effect on the buckling solution [19].  The authors concluded that the random Young’s 

modulus should be applied throughout the model.  Also, they suggested that the aerodynamic 

loads be modeled as random variables [19].  

 Choi, et al expanded on the Monte-Carlo simulation method by using a Latin 

hypercube sampling of the polynomial chaos expansion [27].  This was determined to be a 

computationally efficient procedure to quickly develop statistical data for a large finite element 

model with random material properties.  This current sensor-craft research employs this method 

to provide initial statistical data. 

Basis for Current Research 

 This research will continue the work of Blair and Canfield [4].  To utilize the multi-

disciplinary design method developed by the authors, I incorporate non-linear finite element 

analysis into this design method as well as the rigid joint configuration suggested by Smith et al. 

[15].  Also, the FEM model used will be a highly detailed wing design unlike the simplified models 

used by Gallman and Kroo [1], Samuels [12], and Lin et al. [15].   These features create a model 
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that provides a more accurate representation of the aircraft as presently conceived.  In addition, it 

includes composite materials in the joined-wing structural analysis and optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Methodology 
 

AVTIE Model and Environment 

The Adaptive Modeling Language, developed by TechnoSoft Inc., allows the researcher 

to develop a geometric model through mathematical relationships [3].  Blair and Canfield have 

developed the Air Vehicles Technology Integration Environment (AVTIE) [4], which provides a 

user interface to the AML software capabilities.  The AVTIE code builds a geometric surface 
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model from configuration data defined in three text files.  Appendix A contains text of the baseline 

configuration files and a display of the AVTIE user interface.  Figure 3-1 displays the parameters 

of the geometric surface developed from the configuration files.  AVTIE converts the geometric 

model into data files for analysis with external software such as PanAir and NASTRAN.  AVTIE 

also interprets the output data from these programs and updates the geometric model as required. 

Table 3-1 lists the relevant geometric properties for the baseline configuration.  This study did not 

alter the aerodynamic planform properties of the model during optimization.   

   

Figure 3-1. Planform Configuration [4] 

 

Inboard Span Sib 26.00 m 

Outboard Span Sob   6.25 m 

Forward Root Chord crf   2.50 m 

Aft Root Chord cra   2.50 m 

Mid Chord cm   2.50 m 
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Tip Chord ct   2.50 m 

Forward-aft x-offset xfa 22.00 m 

Forward-aft z-offset zfa   7.00 m 

Inboard Sweep Λib 30 deg 

Outboard Sweep Λob 30 deg 

Airfoil  FX-60-126-1 

Calculated Planform Area  145.0 m2 

Calculated Wing Volume    52.2 m3  

Table 3-1. Baseline Configuration Parameters [4] 

 

The AVTIE software contains information about the mission profile (altitude, airspeed, 

fuel consumption rate, etc.).  The mission profile reflects the current Global Hawk surveillance 

mission requirements.  Since this study did not optimize or adjust the mission requirements, these 

constraints were embedded in the software code and were not changed.  AVTIE separates the 

mission into three categories; ingress, loiter, and egress.  Mission legs are sequentially numbered 

starting at zero.  Table 3-2 displays the mission properties used in this study.   

Table 3-2. Baseline Aerodynamic Parameters [4] 
 

 Ingress (0) Loiter (1) Egress (2) 

Range 3000 nm 
5,550 km 

NA 3000 nm 
5,550 km 

Duration NA 24 hr 
8.64E4 sec 

NA 

Velocity 0.6 Mach @50K ft 
177 m/s 

0.4 Mach  to 65K ft 
118 m/s 

0.6 Mach @50K ft 
177 m/s 

C (SFC) 2.02E-4 (1/sec) 1.34E-04 (1/sec) 2.02E-4 (1/sec) 
Dynamic pressure 2939 Pa 638 Pa 2939 Pa 



 

25 

AVTIE further reduces the mission categories into a fraction of completion for each 

mission leg.  For example, when half of the egress portion is completed, AVTIE defines this 

mission point as 2.50.  AVTIE uses the performance information to provide the weight of the 

remaining fuel at any point in the mission.  Although AVTIE provides for empirical drag 

calculation, currently the Lift-to-Drag ratio (L/D) remains fixed throughout the mission.  The 

constant L/D enters the calculation of fuel required through the Breguet range equation (Equation 

3-1) [20].  In this research only the change in structural weight altered the fuel required. 
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The sensor package (payload) has an estimated mass of 2200 kg and is placed within the 

fuselage.  It is assumed that the payload is a ‘black-box’ that can be placed in the fuselage based 

on the mass balancing requirement. 

AML stores material properties in a separate data file for easy editing (Appendix A).  

Initial material properties were for 2024-T3 aluminum.  AVTIE can not incorporate composite 

material data due to the need to create individual ply layers within each structural element.  Also, 

the CLAS material data was required to account for the radar material embedded in the inboard 

wing skin.  Once the composite structural element thicknesses were optimized via fully stressed 

design; an element thickness was returned to AVTIE that corresponded to the optimized element 

mass but using aluminum material density.  A cyanate-ester composite (Astroquartz) material 

covers the antenna material [8] and is used in the leading and trailing edge skin elements.  This 

material allows the embedded antenna to transmit with minimal interference.  AVTIE initially 

(3-1) 
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defines a uniform element thickness for all structural components.  The AVTIE-generated 

aluminum structural model was converted into a multi-material composite and aluminum model.   

 

 

 

 

Materials 

The linear and non-linear structural optimization and aerodynamic trim process was 

carried out for both the aluminum and composite models. The aluminum model used 2024-T3 

aircraft aluminum with a minimum skin thickness of 0.04 in (1.016E-3 m).  Table 3-3 lists the 

material properties [26]. 

Table 3-3. 2024-T3 Aluminum Material Properties 
 

An allowable Von Mises stress (σe) was developed using [23]: 

( ) exyyx στσσ =⋅++ 222 6
2

1
                                         (3-2) 

 KSI MPa 

σty 47.0 324.05 
σcy 39.0 268.90 

σshear 39.0 268.90 
E 10.5E+3 72395.0 
G 4.0E+3 27580.0 
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Compressive yield stress (σcy) was used as the allowable stress in the x and y directions.  Also, 

the shear stress (σshear) was reduced by a factor of 0.577.  The sensor-craft was modeled using 

plate elements that take transverse shear.  However, the wing box design allowed the skin 

elements to take the majority of bending stress and the spar elements to take in-plane shear.  The 

equation for Von Mises stress reduced to:  
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                                      (3-3) 

The Von Mises stress was calculated with a 1.5 factor of safety as 253x106 Pa (36.7 ksi) 

and was used as the allowable stress constraint in the linear fully stressed design.  In the non-linear 

design, the allowable stress was the Von Mises stress without the 1.5 factor of safety, 379x106 

Pa (54.9 ksi).  To maintain a factor of safety, the loads used in non-linear analysis were increased 

to 150% of the calculated loads.  This optimized the wing structure to withstand a load 150% 

greater than the calculated flight load.  

The composite model incorporated CLAS material on the upper and lower surfaces of 

the forward and aft-wings inboard of the wing-joint.  The CLAS material is a sandwich structure 

of graphite/epoxy, Astroquartz and carbon foam.  The antenna elements are embedded attached 

to the graphite/epoxy layers.  The carbon foam acts as spacing for the antenna elements.  Figure 

1-3 depicts the CLAS material configuration.   
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The composite configuration used graphite/epoxy ribs and spars that were structurally 

optimized in the fully stressed design.  This composite material was designed with the same 

material properties as the composite skin.   

IM7/977-3 graphite/epoxy was used in the CLAS structure and was used in the non-

antenna wing skin areas as well [8].  Table 3-4 lists the typical material properties used in this 

analysis. 

Ex 22.13E+3 ksi 1.53E+11 Pa 
Ey 2.15E+3 ksi 1.48E+11 Pa 
νxy 0.3 0.3 
Gxy 0.6E+3 ksi 4.14E+9 Pa 
tply 0.0056 in 1.42E-4 m 
Table 3-4. IM7/977-3 Material Properties [8] 

The IM7/977-3 composite has a maximum allowable strain of 5000µε (0.5%).  Using a factor of 

safety of 1.5, the allowable strain in linear design was set to 3333µε (0.33%).  As in the 

aluminum model, the non-linear design used the maximum allowable strain (5000µε) and 

increased the loads by 150%.  The design optimization used a lay-up of [+45/-45/0/90] for each 

section of the CLAS material and the same lay-up for the designed, non-CLAS wing skin 

elements.  To approximate adding additional layers, a design variable was assigned to each ply.  

As the structural, fully stressed design optimization required, each ply was thickened or thinned.  

The minimum allowed value was a ply thickness equivalent to the designed number of plies in the 

lay-up created by Northrop Grumman for each orientation in the lay-up [8].  In the CLAS 

material, each ply orientation was assigned a single design variable for both graphite/epoxy layers.  
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For example, if the 0° ply in the lower graphite/epoxy layer required an increase in thickness, the 

0° ply in the upper layer was increased by the same amount. 

 In the outboard wing and wing-joint area, the skin elements were a single graphite/epoxy 

layer with a minimum design of a single ply thickness in each orientation.  The un-designed 

material outside the wing box structure was changed from aluminum to Astroquartz II/RS12-B to 

allow clear radar transmission through the wing.  The properties for Astroquartz are listed below 

in Table 3-5. 

Ex 6.80E+3 ksi 4.68E+10 Pa 
Ey 1.34E+3 ksi 9.23E+9 Pa 
νxy 0.36 0.36 
Gxy 0.72E+3 ksi 4.96E+9 Pa 
tply 0.0055 in 1.40E-4 m 

Table 3-5. Astroquartz II/RS12-B Material Properties [8] 

The Astroquartz material was not optimized in this model.  The Astroquartz has approximately 

one-third the strength of the graphite-epoxy and does not contribute significantly to the strength of 

the wing structure.  Eighteen plies of Astroquartz were used in the CLAS material and in the un-

designed wing areas. 

Justification for Gust Load 
 

Gust conditions created higher aerodynamic load factors than stable maneuver conditions 

for this design.  In straight and level 1.0G flight, the lift load equals the aircraft weight.  If the 

aircraft enters a gust condition, the velocity of the gust rapidly increases the angle of attack.    
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Gust Velocity

Flight Path Velocity

∆α

 

Figure 3-2.  Change in Angle of Attack Due to Gust Velocity 

This change in angle of attack increases the lift by ∆L and causes acceleration greater than the 

1.0G weight [20]. However, the change in lift due to the gust is unaffected by the weight of the 

aircraft. 
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For a given velocity and angle of attack, the load factor due to a gust condition increases as the 

weight decreases [22].  A lighter aircraft will have a higher acceleration than a heavier aircraft at 

the same gust and flight conditions.  Therefore, a gust at the end of the mission with minimum fuel 

mass will cause the highest load factor increase. 

The gust load calculated above assumes an instantaneous gust applied to the entire 

aircraft.  Typically, an aircraft will fly into a gust condition.  For a large aircraft, gradually flying 

into the gust will reduce the load factor encountered.  This is known as the gust alleviation factor 

K [22] defined as: 
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where µg is the airplane mass ratio.  The gust alleviation factor is applied to the gust velocity, KU.  

The gust alleviation factor is dependent on the wing loading (W/S) of the aircraft.  A higher wing 

loading increases the gust load factor. 

 For a large aircraft, the gust conditions are taken as 50 ft/s at cruise velocity, VC and 66 

ft/s at design speed for maximum gust intensity, VB [12].  The design maneuver speed, VB is at 

least 43 knots less than cruise speed [12].  The gust velocities occur in the positive and negative 

directions.  These speeds are used up to 20,000 ft.  Above 20,000 ft, the gust speeds decrease 

linearly [22].  Gallman and Kroo used the same gust velocities in their joined-wing research [1].  

They also found that the buckling critical loads were gust loads applied to an aircraft without fuel 

mass. 

Linear fully stressed design using a 2.5G maneuver load at several mission points created 

a minimum weight design that is not buckling critical.  Buckling depends on compressive stresses.  

The applied aerodynamic and inertia loads indirectly create compression in the aft-wing through 

the bending moments generated.  Therefore, the applied loads must be greatly increased in order 

to create a significant increase in the compressive stress in the aft-wing.  Gust loads can create a 

large aerodynamic load that is not entirely relieved by the inertia forces.  These loads create 

sufficient compressive stress in the aft-wing to buckle the structure. 

Developing Gust Loads in AVTIE 

   AVTIE sets the altitude as constant for each mission leg.  At the end of the mission, the 

altitude is still set to 50,000ft.  The dynamic pressure, which is used in PanAir to develop the 

aerodynamic loads, was manually changed to develop aerodynamic loads at 20,000ft for gust 

conditions.  The sensor-craft model was then aerodynamically trimmed for a straight-and-level, 

1G flight.  This flight condition was transferred to NASTRAN for linear static analysis with the 

current element thickness data.  No optimization was performed on this model.  The linear static 



 

32 

deformations were returned to AVTIE and the model was trimmed using the deformations and the 

1G flight condition.  Once the model was trimmed, the gust angle of attack ∆α (Equation 3-4) 

was manually calculated and added to the trimmed angle of attack.  New aerodynamic loads 

were calculated through PanAir.  The new loads were applied to the structural model for use in 

the multiple load case, fully stressed design optimization. 

Non-Aerodynamic Loads 

Another critical load case occurred during taxi at the beginning of the mission for this 

design.  The aircraft is loaded with full fuel mass and the wing surfaces are generating no 

appreciable lift.  If the aircraft taxis over a crater or pothole, the wing will experience a large 

positive acceleration due to the fuel mass.  This load causes the aft-wing to undergo large tension 

forces that are not normally experienced during flight.  For this research, the taxi crater impact 

load was assumed to be 1.75G for rigid landing gear.  It was assumed that the landing gear design 

and taxi speed could be tailored to meet this load requirement. 

The landing impact load was also analyzed.  Since sensor-craft is a remotely piloted 

vehicle, the controller may not have the ability to land the aircraft with exact precision and minimal 

impact loading.  Thus, this research estimates a landing load factor of 3.0G based on conceptual 

design practices [22].  The landing load case was not critical, because the weight of the aircraft is 

minimal at the end of the mission. 

PanAir Aerodynamic Analysis 

PanAir analyzes an aerodynamic model consisting of panel elements.  Figure 3-3 depicts 

the current baseline PanAir panel configuration that AVTIE generates. 
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Figure 3-3. PanAir Baseline Geometry with 30 Degrees Sweep (Plan View) [4] 

AVTIE provides PanAir with dynamic pressure information based on the mission point to be 

analyzed.  Also, AVTIE transfers angle of attack and aft-wing twist information specified by the 

designer to PanAir.  PanAir calculates interpolated pressures at the panel corners.  The 

interpolated pressures are integrated by AVTIE and distributed over the structural model’s 

forward and aft-wings.  AVTIE provides aerodynamic center and center of pressure information 

as well as total lift and induced drag forces.  The PanAir model used in this research is the same 

as developed by Blair and Canfield [4]. 

A concurrent study is underway to incorporate aerodynamic results from MSC.Flight 

Loads software into the AVTIE environment.  Flight Loads can trim the configuration and export 
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the model directly to NASTRAN.   The Flight Loads and PanAir panel methods will be 

compared with a Euler/Navier-Stokes CFD code for validation [21]. 

NASTRAN Linear Finite Element Analysis 

Based on the integrated PanAir pressure distribution, AVTIE transfers the aerodynamic 

loads to the structural model.  AVTIE then creates the NASTRAN input file based on the 

structural model and load conditions.  AVTIE creates a linear static analysis input file with uniform 

skin thickness throughout the model, even if AVTIE contains element thickness data from a 

previous optimization or updated model.  The thickness of an element is defined in NASTRAN 

through a property entry known as a PSHELL card.  Thus, to design the thickness of each 

individual element, each element must refer to an individual PSHELL card.  NASTRAN 

computes element displacements and stresses due to the load conditions imposed on the model.  

NASTRAN uses user-defined design variables to accomplish a linear fully stressed resizing of 

each element within the wing-box structure.  Fully stressed design increases element thickness to 

meet the allowable stress requirements and decreases element thickness when the element stress 

is less than the allowable stress.  The fully stressed design equation for individual element resizing 

is: 
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This resizing achieves a structure that meets the allowable stress in each element and is a 

minimum weight design.  Equation 3-9 is also used in the fully stressed design for the composite 
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model.  However, the composite model is resized using maximum strain allowable in place of 

maximum stress allowable (Equation 3-10).  The resizing method remains the same. 
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AVTIE does not create the information NASTRAN requires to perform fully stressed 

design.  NASTRAN requires an individual design variable for each element thickness to be 

resized.  The design variables are defined in DESVAR cards.  The DESVAR cards specify a 

starting thickness as well as maximum and minimum thickness for each element.  The design 

variables are then related to an element thickness through the DVPREL or design variable-

property relationship cards.  These cards specify the design variable that relates to a specific 

element thickness. 

 To resize the elements according to equation 3-9 or 3-10, NASTRAN must develop the 

Von Mises stress or the strain in each element.  The design response (DRESP1) cards specify 

which type of stress or strain information to create for each element.  The design constraint cards 

(DCONST) specify the upper and lower bounds of the response.  The fully stressed design 

algorithm uses this constraint information as the allowable stress or maximum strain limits.  Figure 

3-4 displays the relationship of all the NASTRAN design data, property entries, and elements. 
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Design Variable
(Thickness) Design Relationship Property ID

(PSHELL) Element

Design Response
(Stress/Strain)

Design Constraint
(Allowable Stress/Strain)

 

Figure 3-4.  NASTRAN Fully Stressed Design Input Data 

AVTIE does not produce any of these fully stressed design data entries.  A MATLAB 

code was created to develop the fully stressed design input file from the uniform thickness, linear 

static analysis files that AVTIE creates and thickness data from a previous optimization, if 

available.  If previous optimization data is unavailable, the MATLAB code used the uniform 

thickness from AVTIE as the starting point of the fully stressed design. 

NASTRAN is able to perform fully stressed design for multiple load cases simultaneously.  

NASTRAN resizes each element based on the element’s highest stress over all load cases.  The 

MATALB code created the input file using multiple mission load cases including taxi crater 

impact, landing impact and gust load conditions.  AVTIE generated the individual load cases for 

the gust and maneuver conditions.  Once NASTRAN completed the analysis, MATLAB created 

element thickness and displacement files formatted for AVTIE use. This data was used to update 

the baseline model weight and deflections, which, in turn, are needed to recalculate the flexible 

aerodynamic loads and trim. 
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 NASTRAN performs non-linear analysis for a single load case only.  NASTRAN is also 

unable to perform non-linear fully stressed design.  Therefore, additional MATLAB code was 

created to execute NASTRAN non-linear analysis for each load case and perform the fully 

stressed design algorithm within MATLAB. 

NASTRAN Non-Linear Structural Analysis 

 For a finite element model involving small displacements, the linear strain/displacement 

relationship is valid. 
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Equation 3-11 is a Taylor series approximation ignoring the higher order terms.  For large 

deformations, this approximation becomes invalid. 

 In finite element analysis, the element strain/displacement relationship is represented as: 

{ } [ ]{ }uB=ε                                                         (3-12) 

where [B] is the derivative of the shape function matrix [N], at the current deformed model 

geometry [25].  Through an updated Lagrangian approach, NASTRAN calculates the linear 

strains in an updated coordinate system.  This eliminates the effects of rigid body rotation [25].  

 NASTRAN solves a non-linear problem by dividing the total applied load into smaller 

increments.  Each increment is solved through an updated stiffness matrix and updated element 

coordinates.  NASTRAN solves for equilibrium at each load increment.  The internal force: 
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dVBF
V

T∫= σ                                                     (3-13) 

depends upon the element matrix B  which is part of the strain equation, 

{ } [ ]{ }duBd =ε                                                       (3-14) 

The B  matrix can be divided into linear and non-linear parts: 

NL BBB +=                                                       (3-15) 

The x component elements of BN are: 
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and the y and z component elements are similar.  Differentiating equation 3-13 yields, 

dVBddVdBdF
V

T

V

T ∫∫ += σσ )()(                                          (3-17) 

This reduces to, 

[ ]duKKKdF RL σ++=                                                   (3-18) 

where 
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                       (3-19a,b,c) 

KL represents the linear stiffness matrix.  Kσ and KR represent the geometric stiffness based on 

initial stress and the stiffness due to large rotations respectively.  The geometric stiffness matrix is 

equivalent to the differential stiffness matrix used in buckling analysis [25]. 

Updating the stiffness matrix is the most time consuming process in the non-linear analysis.  

NASTRAN reduces the time required through adaptive algorithms.  The algorithms converge to 

an equilibrium solution at each incremental load step and reduce the number of stiffness matrix 

updates required.  NASTRAN contains several adaptive algorithms applicable to non-linear 

analysis, including a modified Newton-Raphson method as the default method [25].  From the 

linear solution, 

{ } [ ]{ }uKF =                                                           (3-20) 

the residual error vector of each iteration, i, is calculated from the internal force as, 

{ } { } { }ii FPR −=+1                                                      (3-210) 

This residual error is carried into the next iteration to recalculate internal forces.  The Newton-

Raphson method converges when, 

2*1* ii uuquu −≤− +                                                    (3-22) 
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where q is a constant and u* is the true displacement.  To achieve an equilibrium state, each load 

increment is converged to the true displacement.  Once the increment is converged, the stiffness 

matrix is then updated. 

 NASTRAN has the ability to include follower forces in non-linear analysis.  A follower 

force changes direction as the model deforms and rotates.  Normally, forces maintain an 

orientation relative to the global coordinate system regardless of the deformation.  In this study, 

follower forces were not included in the NASTRAN analysis.  Aerodynamic pressure always acts 

normal to a lifting surface.  Thus, as a wing deforms the pressure remains acting normal to the 

surface (i.e. a follower force).  PanAir calculates the aerodynamic pressure distribution on the 

deformed wing surface.  Therefore, the follower forces are developed within AVTIE and it is not 

required to develop them within NASTRAN. 

Multiple Case, Non-Linear Fully Stressed Design 

 MATLAB code was developed to perform the fully stressed design algorithm for multiple 

load cases.  First the code created individual non-linear input files for each load case.  

NASTRAN executed each input file and returned the element stresses.  The MATALB code 

analyzed each element using the largest stress from all load cases.  Each element was resized using 

equation 3-2.  However, if the stress ratio σi/σallowable was greater than one, the α was set to 0.9 

and 0.2 if the stress ratio was less than one.  Using a variable α allowed the optimization to add 

material quickly to alleviate overstressed elements and remove material slowly to avoid 

excessively thinning elements. 
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 Once the elements were resized, the code created new input files for each load case 

including the new element thickness.  These files were executed and the resulting element stresses 

were used in resizing.  This process was repeated until the highest element stress was no more 

than 1.5% greater than the allowable stress. 

 Once the largest element stress was no more than 1.5% over the allowable stress, the α 

values were changed to 0.5 and 0.0 respectively.  This new condition only added material to 

satisfy any stress violations, but did not remove material to achieve the absolute minimum weight.  

This prevented a tendency to diverge from the minimum weight design (see Figure 4-5).  The 

resized model quickly satisfied the allowable stress limits.  Once satisfied, the code exported 

element thickness and displacement files to AVTIE.  

NASTRAN Buckling Analysis 

 A structure is buckled when an applied load causes an unlimited amount of deformation.  

In NASTRAN, adding the differential stiffness to the linear stiffness matrix leads to an eigenvalue 

problem that is solved for linear buckling [24].  The differential stiffness matrix is the first, higher-

order terms in the strain/displacement relationship.  The stiffness matrix for the model becomes: 

[K] = [Ka] + [Kd]                                                    (3-23) 

In equilibrium, the total potential must be stationary. 

0  ]{u}[K  ]{u}[K
][

da =+=
∂

∂

iu
U

                                     (3-24) 

This can be rewritten as: 
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( ) 0  {u}]K[P ][K daa =+                                              (3-25) 

where Pa is the applied load.  This equation can be solved for the non-trivial values of Pa by: 

0  ]K[P ][K daa =+                                                 (3-26) 

 The non-trivial values of Pa are the critical buckling loads.  “The number of buckling loads 

obtainable…is equal to the number of degrees of freedom in the model”[24].  This implies, 

icritical,ai PP* =λ                                                  (3-27) 

Equation 3-27 can be incorporated in equation 3-26: 

0  d]K[ [Ka] i =+ λ                                               (3-28) 

This is now an eigenvalue problem where the solutions of λi are scale factors of the applied load 

that cause a buckling condition.  For a structure to be considered safe from buckling or buckling 

safe, the lowest value of λi should be greater than one.  This implies that the structure will not 

buckle under the applied load Pa. 

 NASTRAN uses a Lanczos method to extract eignevalues for buckling analysis.  This is a 

method similar to the inverse power method, but is more efficient.  “This method computes 

accurate eigenvalues and eigenvectors” [24]. 

Trim for Rigid Aerodynamic Loads 

For this joined-wing configuration, aircraft angle-of-attack and aft-wing flexible twist 

angle control pitch trim.  Note that aft-wing twist only provides pitch trim control.  Additional 
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control surfaces are used for roll control.  The aft-wing is rotated at the wing root and remains 

rigid at the wing-joint.  An un-modeled actuator in the vertical tail drives the twist angle.  AVTIE 

uses a linear Taylor series approximation to compute a trimmed angle-of-attack a and aft-wing 

root twist angle d. 
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AVTIE then calls PanAir to regenerate the pressure distributions at the trimmed 

conditions.  The researcher must pay special attention to the aft-wing root twist angle during the 

trimming process.  A large angle-of-attack or twist angle will generate excessive drag and should 

be avoided if possible [4]. 

At selected points in the mission, PanAir trims the aircraft for a steady, pull-up or turn 

maneuver (2.5G load).  This verifies the aircraft’s ability to achieve maneuverable flight throughout 

the mission profile.  L/D can be calculated at each of these points for future study.  Most 

importantly, static stability requires that the center of gravity is forward of the aerodynamic center, 

and pitch trim requires that the center of gravity is at the center of pressure.  Using the location of 

the payload mass to adjust the center of gravity at the end of the mission (zero fuel) aids the 

aircraft’s ability to maintain a stable trim condition throughout the mission.  This improves the 

aerodynamic performance at the trimmed condition by reducing the required angle-of-attack and 

twist angle.  Equation 3-30 is used to calculate the necessary change in payload location to move 

(3-29) 
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the center of gravity to the aerodynamic center.  Once the payload mass is moved to an 

appropriate location, it is fixed at that location for the entire mission. 

cgaccg X
sPayloadMas

TotalMass
XX ∆=⋅−                                      (3-30) 

Once the payload is fixed for trim at the end of the mission, the location of the fuel can be 

used at the beginning of the mission (maximum fuel load) to augment mass balancing of the 

aircraft.  Adequate fuel management can be used to balance the center of gravity throughout the 

mission after initial conditions. 

The connection of the forward and aft wings is considered to be a rigid joint. An un-

modeled actuator assembly controls the twist of the aft-wing root.  Twisting the aft-wing root for 

a trimmed condition generates additional structural stress in the aft-wing.   AVTIE updates the 

finite element model with the enforced aft-wing twist required for trim.  NASTRAN uses the 

aerodynamic loads and enforced twist of the trimmed condition to calculate deflections and 

optimize the structural design. 

Trim for Flexible Aerodynamic Loads 

Fully stressed design changes the overall weight and weight distribution of the sensor-

craft.  AVTIE recalculates the center of gravity location.  AVTIE also recalculates the fuel 

required to complete the mission based on the Breguet range equation (3-1).  Recall that the L/D 

ratio remains fixed in this study.  The PanAir model is updated to account for the flexible 

deformation.  PanAir generates new aerodynamic loads based on the deformed model.  AVTIE 

uses these loads to re-trim the aircraft for a selected mission point using the same equilibrium 
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equations (3-29) as rigid trim.  The center of gravity changes due to the optimized structural 

component thickness and updated fuel weight, so fuel management or payload mass balancing (3-

30) may be needed.   

Aerodynamic and Structural Optimization Process 

 Linear Optimization 

Figure 3-5 illustrates the overall optimization process.  The green boxes are functions 

performed by AVTIE.  The lavender box highlights the PanAir function of generating flexible or 

rigid aerodynamic loads for a given angle of attack and twist.  The blue box highlights the 

NASTRAN finite element structural optimization based on the aerodynamic loads and the 

geometric model.  

Generate Parametric Geometry

Rigid/Flexible
 Air Loads

Σ Weights

FEA

Trim α, δ

Drag & Range

 

Figure 3-5.  AVTIE Optimization Process 
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First, the default model is trimmed for a 2.5G maneuver using the undeformed model 

through seven points in the mission.  At the end of the mission, the sensor-craft is trimmed for a 

1.0G flight condition at 20,000ft.  This is done for the cruise and design maneuvering speeds.  The 

∆α’s due to gust are then added into AVTIE and new aerodynamic loads are calculated in 

PanAir.  These trimmed rigid aerodynamic loads, gust loads and inertia forces are transferred to 

NASTRAN through MATALB.  The MATLAB code also creates taxi and landing impact loads 

by utilizing only scaled inertia forces at the beginning and end of mission conditions.  NASTRAN 

performs linear fully stressed design to optimize the model for all the load cases.  The new element 

thickness and displacement files are returned to AVTIE.  The new weight of the vehicle is 

calculated in AVTIE.  Also, a new total fuel requirement and center of gravity is calculated.  

AVTIE uses the displacement files for each mission point to incorporate the wing deformation into 

the PanAir model.  New aerodynamic loads and stability derivatives are calculated and the model 

must be aerodynamically trimmed and mass balanced for all mission points.   Also, the gust loads 

are recalculated using the 1.0G deformations and new element thickness.  New ∆α’s are added 

to the 1.0G conditions.  All the new load cases are again exported to NASTRAN through 

MATLAB, including the ground impact loads.  Fully stressed design is performed to optimize the 

structure for the new loads.  The deformations and element thicknesses are returned to AVTIE 

and the trim process is repeated for the new deformations, weights, and center of gravity.  The 

process continues between flexible trim and linear fully stressed design until the weight changes by 

less than 2%.  This optimal design is analyzed for global buckling through NASTRAN.  A 

buckling load less than the design load (i.e., buckling eigenvalue of less than one) typically 
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indicates the onset of non-linear geometric effects.  This implies the need to perform non-linear 

analysis and optimization. 

 Non-Linear Optimization 

 Beginning with the converged model from linear optimization, a final flexible trim is 

calculated using the linear deformations, optimized weight and center of gravity.  The gust loads 

are again calculated.  The trimmed aerodynamic loads, gust loads and impact loads are exported 

to NASTRAN through a MATLAB code which creates non-linear analysis files for each load 

case.  The stresses from each load case are returned to MATLAB and the code resizes each 

element through the multiple case, fully stressed design algorithm discussed above.  MATLAB 

and NASTRAN are executed repeatedly until the optimum design is achieved.  MATLAB then 

creates and exports the element thickness and displacement files.  AVTIE again performs flexible 

trim and gust load calculations.  The non-linear fully stressed design and flexible trim processes 

are repeated until the weight changes by less than 2%.  A final linear buckling analysis is 

performed for all mission points, gust loads, and impact loads. 

 The linear optimization and non-linear optimization processes are performed for the 

aluminum and composite models.  Both models begin with the AVTIE, uniform thickness model.  

Results for both models are presented in Chapter 4. 

Stochastic Analysis 

 The inboard, forward and aft-wings were modeled having normal Gaussian random 

material properties.  The wing-joint was also modeled using a random material property.  The 
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forward-wing was divided into two regions, the upper and lower surface, each having a separate 

random material property.  The aft-wing was similarly divided into an upper and lower surface 

region defining two random material properties.  The wing-joint skin elements all used a single 

random material property. 

 NASTRAN buckling analysis was executed using the five random material properties.  

The first buckling eigenvalue was computed for each analysis and a probability distribution 

function was generated.  The process used was identical to the process developed by Choi, et al 

[27]. 

 

IV. Results 
 
 

Joined-Wing Structure 

 The Sensor-Craft configuration optimized in this study performed similarly to the joined-

wing results found by Wolkovich.  When a vertical, distributed load was applied to the uniform 

thickness joined-wing model, the load caused a deformation in the vertical direction and the 

forward direction.  Figure 4-1 depicts a plan view of the joined-wing under a vertical applied 

load.  The wire-frame model is the undeformed shape. 
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Figure 4-1.  Uniform Thickness, Vertical Distributed Load 

 When the aft-wing is twisted, additional stresses and deformations occur.  Figure 4-2 

depicts the scaled deformation and Von Mises stress created by applying a -5.0º aft-wing twist.  

No aerodynamic or inertial loads were applied to the model. 
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Figure 4-2.  Uniform Thickness, -5.0º Aft-Wing Twist 

Aerodynamic/Structural Coupling 

 This model exhibits closely coupled aerodynamic and structural behavior.  Early in the 

analysis, a single mission point, 2.98 at 2.5G maneuver load was optimized using rigid and flexible 

trim.  Also, the aft-wing jig shape was set to the trimmed aft-wing twist at each iteration.  Table 4-

1 lists the aerodynamic properties during the optimization process using rigid trim. 

Iteration Total Mass (kg) Angle of Attack, α Aft-Wing Twist, δ 
0 14422 0.155 -1.453 
1 10395 -1.066 -1.983 
2 10540 -1.041 -1.890 
3 10546 -1.041 -1.882 
4 10545 -1.041 -1.882 

Table 4-1.  Rigid Trim, Linear Structural Optimization for Mission Point 2.98 at 2.5G 
Maneuver Load 
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 This single load case optimized quickly without oscillation of the angle of attack and aft-

wing twist.  However, when the flexible aerodynamic trim was used, the aft-wing twist changed 

due to the structural weight change.  In this single case optimization, the jig shape was set to –

0.7°.  Table 4-2 lists the same aerodynamic properties during the flexible trim and structural 

optimization and Figure 4-3 depicts a plot of the mass and twist angle at each iteration. 

Iteration Total Mass (kg) Angle of Attack, α Aft-Wing Twist, δ 
0 14422 0.155 -1.453 
1 10482 -1.066 -1.881 
2 10414 -1.063 -1.980 
3 10543 -1.060 -1.823 
4 10423 -1.056 -1.996 
5 10520 -1.057 -1.863 
6 10431 -1.057 -1.985 
7 10487 -1.059 -1.964 

Table 4-2.  Flexible Trim, Linear Structural Optimization for Mission Point 2.98, at 2.5G 
Maneuver Load and Jig Shape = -0.7°  
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Total Mass and Twist vs. Iterations
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Figure 4-3.  Total Mass and Aft-Wing Twist (d) versus Iterations  

 

 The angle of attack did not change significantly during the optimization process.  In the 

aft-wing, the enforced twist added to the jig shape twist created additional stress in the aft-wing.  

The additional stress forced the fully stressed design to add mass to the aft-wing to relieve the 

additional stress.   Once the mass was increased, the flexible trim process increased the twist (i.e., 

made the twist less negative) to create more lift.  This relieved the stress in the aft-wing and the 

next optimization process reduced the structural mass.  The reduced mass required a more 

negative twist angle, which again increased stress in the aft-wing.  This single load case 

demonstrates the close interaction between aerodynamic trim and structural optimization. 
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Linear Aluminum Results 

Initial optimization based on linear analysis of the aluminum model was performed using 

2.5G maneuver loads at seven points in the mission.  Taxi crater impact and landing loads were 

included.  After three fully stressed design optimizations, the wing structure mass redistributed 

enough to cause the aircraft to be unable to achieve aerodynamic stability.  The payload was 

moved forward in the fuselage (Equation 3-30) to provide an adequate center of gravity.  Table 

4-3 lists the wing structure and total vehicle mass after each NASTRAN structural optimization.  

Flexible aerodynamic trim was executed in AVTIE after each structural optimization.  The total 

fuel required was not recalculated after each structural optimization.   

Iteration Wing Structure 
(kg) 

Gross Take-Off 
(kg) 

0 6779 39034 
1 2738 34992 
2 4079 36333 
3 4129 36383 
4 3786 36041 
5 3766 36020 

Table 4-3.  Optimized Mass at Structural Iterations 2.5G Maneuver, Taxi, and Landing 
(No Gust Loads) 

 

The aluminum model converged to within 1.0% change in the structural mass. Figures 4-4 

and 4-5 depict the upper and lower wing skin thickness distributions.  As described by 

Wolkovich, the structural mass becomes concentrated at the upper leading edge and lower trailing 

edge of the wing box [10].  In the substructure of the aft-wing (Figure 4-6), the aft-most spar 

increased in thickness as well.  The wing root substructure remained at minimum gage thickness.  

This is an indication that the bending stress carried by the wing skin is greater than the shear 
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stresses carried by the spars.  The other ribs and spars also remained at minimum gage thickness.  

This material distribution places the majority of the mass at the maximum perpendicular distance 

from the neutral surface.  The neutral surface is aligned with the joined-wing plane as illustrated in 

Figure 2-1. 

 

Figure 4-4.  Linear Optimized Joined-Wing Skin Thickness Distribution, Top Surface 
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Figure 4-5. Linear Optimized Joined-Wing Skin Thickness Distribution, Lower Surface 

 

 

Figure 4-6.  Linear Optimized Aft-Wing Substructure Thickness 
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A buckling analysis was performed for all optimized load cases.  The critical buckling 

eigenvalue of 0.85 occurred at the taxi crater-impact load case.  The most severe buckling 

occurred in the forward-wing.  All flight conditions exhibited a buckling eigenvalue of 1.2 or 

greater.  Gust loads were developed for the 2.98 mission point at 20,000ft.  Buckling analysis 

was also performed for these gust loads.  Buckling occurred at the cruise and maneuver speed 

gust conditions with eigenvalues of 0.64 and 0.75 respectively.  This indicated that the critical 

aerodynamic load cases were gust conditions and should be added to the optimization process. 

A second linear optimization process incorporated the critical end-of-mission gust loads.  

It also updated the fuel requirement according to the Breguet range equation after each structural 

optimization. It also reduced the minimum gage thickness of the outboard spars to more 

accurately reflect the required material.  All load cases, including taxi and landing, were included 

from the initial iteration.  Also, the payload mass was placed at the location required by the mass 

balancing for dynamic stability from the previous linear optimization method.  NASTRAN was 

unable to converge the multiple load case model in a single optimization analysis when gust loads 

were included.  The NASTRAN analysis was restarted from the final element thickness values, 

and the step size (i.e., α value in Eq. 3-9) was reduced.  This restart with a reduced α improved 

the optimization performance and reduced the stress constraint violation to less than 1.5% 

violated.  Table 4-4 lists the optimized mass at each iteration.   

 

Iteration Wing Structure 
(kg) 

Gross Take-Off 
(kg) 

Total Fuel 
Required (kg) 
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0 6779 39034 24674 
1 6113 37491 23756 
2 5485 36075 23226 
3 5312 35409 22679 
4 5282 35369 22659 

Table 4-4.  Optimized Mass at Structural Iterations (Including Gust Load Cases, 
Updated Fuel Requirement) 

 

This revised optimization process reflects an aluminum joined-wing structure that is 

designed for minimum weight.  Also, as the wing structure mass decreased, the total fuel 

requirement and total weight decreased. 

 Buckling analysis was performed on the optimized model for all load cases.  The critical 

buckling eigenvalues for all 2.5G flight conditions were above 1.25.  The lowest buckling values 

for maneuver loads (1.257, 1.274, and 1.300) do not meet the 50% factor of safety requirement.  

The gust load cases exhibited buckling eigenvalues of 0.63 for cruise and 0.55 for design 

maneuvering speed at the end of the mission.  The taxi and landing impact buckling eigenvalues 

were 1.09 and 5.16 respectively.  Figure 4-7 depicts the first buckling mode shape of the 

maneuver gust condition.   
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Figure 4-7.  First Buckling Mode Shape, 2.98 Gust at Maneuver Speed 

The gust condition induced a 3.03º and 4.23º change in angle of attack for the cruise and 

maneuver gust respectively (Equation 3-4).  The gust alleviation factor for the optimized mass was 

54% (Equations 3-7 and 3-8).  These gust loads increased the load factors by 3.06G and 3.16G 

for cruise and maneuver speeds (Equation 3-6).  Figure 4-8 depicts the first buckling mode shape 

of the taxi impact condition.  In this load case, the forward-wing buckles first.  It also buckles in a 

downward mode shape.  This is not intuitive since a down load would cause tension in the upper 

wing surface and compression in the lower wing surface.  However, the down load is a distributed 

load along the span of the forward and aft-wings due mainly to the weight of the fuel carried in the 

wing.  Thus, a large portion of the load is carried in the forward-wing inboard of the wing-joint.  
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This downward load inboard of the wing-joint causes the downward deflection and buckling of 

the forward-wing. 

 

Figure 4-8.  First Buckling Mode Shape, Taxi Impact Load 

Non-Linear Aluminum Results 

Once the aluminum model was optimized and trimmed, a non-linear static analysis was 

performed on a single 2.5G steady maneuver load case at the beginning of the mission.  The 

buckling eigenvalue for this case was 1.76.  This non-linear analysis significantly differed from the 

linear NASTRAN output.  The wing tip deflection for a maneuver load case was calculated 

through linear analysis to be 3.24 m.  The non-linear analysis calculated the tip deflection for the 

same load case as 18.08 m.  Figure 4-9 displays the linear and non-linear deformations of a single 

load case. 
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Linear Deformation Non-Linear Deformation
 

Figure 4-9.  Linear and Non-Linear Structural Deformations, 2.5G Maneuver 
Load, Beginning of Ingress 

 

Figure 4-10 displays a graph of the incremental load versus the wing tip deflection for 

non-linear analysis of a 2.5G steady maneuver. This graph displays an expected nearly linear 

slope up to approximately 70% of the 2.5G applied load.  Above 70%, the structure appears to 

soften and deflections increase rapidly as load is increased.  This highlights that geometric non-

linearity is present in the joined-wing model well below the buckling eigenvalue at ~4.5G load 

factor.  .   
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Figure 4-10. Load Factor vs. Wing Tip Deflection, 1.00 at 2.5G Maneuver 

Figure 4-11 depicts the non-linear and linear wing-tip deflection versus load factor for a 

gust load at maneuver speed.  In this case the critical buckling eigenvalue (? = 0.55) was less than 

the linear design load factor.  However, the critical buckling eigenvalue was approximated by the 

non-linear analysis at the point of reflex on the non-linear curve. 
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F

igure 4-11.  Load Factor vs. Wing Tip Deflection, 2.98 Gust at Maneuver Speed 

The non-linear stress ratio algorithm for a multiple load case did not converge for a fixed 

step size as in (Equation 3-9).  The mass reduced towards a converged solution and then 

diverged (Figure 4-12).   

30  1   1  —1 1 1 1 1 1 

— riijcuiriear 
- -   Linear 
— BucKling ^____— 

25 - 
^--^^ 

20 
/ 

w*-^ g / 
f 

& / 
s 1 
Ol 

"SIS _ _ 
Ct I 
a. f 

P j 
□L \ 
c f 

i 1 
10 

__H--"~ 

5 1 __  j^  ~~                                                                                                                                                                                                             — 

_^   jJ   "^ 

y^^-^ 

_^^^_J"'"''^ 

0 -^'-"'^'""^ 1 1  _l 1 1 1 1  

05 l.i 25 3.5 
Loea Fador 



 

63 

 

Figure 4-12.  Non-Linear FSD Iterations versus Mass 

An adaptive condition was added to the MATLAB fully stressed design algorithm.  Once 

the stress constraint violation reduced to less than 1.5%, the a value was set so that material was 

only added to the elements and not removed.  This algorithm does not produce a minimum weight 

design, rather it produces a design that satisfies the stress constraints and approaches a minimum 

weight.  An example of the adaptive non-linear iterations versus wing structure mass is plotted in 

Figure 4-13.   
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Figure 4-13.  Adaptive Non-Linear FSD Iterations versus Mass 

The adaptive method produced the optimized mass listed below in Table 4-5. 

Iteration Wing Structure 
(kg) 

Gross Take-Off 
(kg) 

Total Fuel 
Required (kg) 

0 5282 35379 22797 
1 7378 43346 27907 
2 8020 45810 29493 
3 8595 48008 30909 
4 9502 51478 33142 
5 9804 52628 33883 
6 9800 52616 33875 

Table 4-5.  Non-Linear Optimized Mass at Structural Iterations (All Load Cases, 
Updated Fuel Requirement)  

The non-linear optimized mass was significantly higher than the linear optimization predicted.  A 

buckling analysis was performed on the optimized model for all mission cases.  The critical 

buckling cases were taxi impact and gust maneuver conditions with buckling eigenvalues of 1.122 

and 1.410 respectively.  All flight load cases were buckling safe with the lowest eigenvalue of 

unii 

4200 ■ 

35 U 
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2.840.   The buckling mode shapes of the critical cases were similar to the buckling shape of the 

linear optimization model (Figures 4-7 and 4-8). 

 The material distribution was also similar to the linear model, however the thickness of 

each element was approximately 50% higher.  Figures 4-14 and 4-15 display the element 

thickness distribution of the top skin surface and the aft-wing substructure respectively. 

 

Figure 4-14.  Non-linear Optimized Joined-Wing Skin Thickness Distribution, Top 
Surface 
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Figure 4-15.  Non-linear Optimized Aft-Wing Substructure Thickness 

Linear Composite Results 

 The composite model was optimized starting from the AVTIE-generated, uniform 

thickness model.  Aerodynamic loads and trim conditions were created for the default model and 

MATLAB was used to transform this model into a CLAS material and graphite/epoxy, composite 

model.  The maximum allowable fiber strain was used as the design criteria in the NASTRAN 

fully stressed design algorithm.  The use of composite materials reduced the required mass.  This, 

in turn, reduced the total fuel requirement.  Table 4-6 displays the initial linear optimization 

iteration. 
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Iteration Wing Structure 
(kg) 

Gross Take-Off 
(kg) 

Total Fuel 
Required (kg) 

0 6779 39034 24674 
1 4166 34332 22103 

Table 4-6.  Composite, First Fully Stressed Design, Linear Analysis (All Load Cases, 
Updated Fuel Requirement)  

 

 The first structural optimization reduced the non-CLAS material to minimum gage 

thickness.  The CLAS material was thickened at the aft-wing root in a manner similar to the 

aluminum model.  The upper-leading and lower-trailing edges were thickened (Figures 4-16 and 

4-17).  Since only the graphite/epoxy plies in the CLAS material were thickened, the increase in 

total element thickness of the CLAS material was minimal. 

 

Figure 4-16.  Composite, Linear Optimization Joined-Wing Skin Thickness Distribution, 
Top Surface, First Structural Iteration 
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Figure 4-17.    Composite, Linear Optimization Joined-Wing Skin Thickness 
Distribution, Lower Surface, First Structural Iteration 

 

 The buckling mode shape was analyzed for the gust load condition at maneuver speed for 

this first structural optimization iteration.  The first buckling mode occurred at an eigenvalue of 

1.14.  Figure 4-18 depicts the shape of this buckling mode.  This indicates that the initial structural 

optimization created a buckling-safe design. 
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Figure 4-18.  Composite, First Buckling Mode Shape, 2.98 Gust at Maneuver Speed 

 

In this buckling case, the forward-wing buckled before the aft-wing.  However, the aerodynamic 

loads and inertia loads applied to the model were loads developed for the uniform thickness 

aluminum model.  The model is not in aerodynamic trim for the new mass distribution.  These 

factors increased the compressive stress in the forward-wing and caused the buckling. 

Stochastic Results 

 An initial stochastic analysis was performed using the linear optimized aluminum model 

and the taxi crater impact load case that was 9.0% buckling safe.  A Gaussian normal random 

variable was applied to five regions within the wing structure to model uncertainties within the 

material properties.  The standard deviation of the material random variables was 20% with a 

mean value of the Young’s modulus for aluminum (Table 3-3).  One thousand analysis cases were 
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run and created a normal probability distribution function of the output.  The mean of the output 

was 1.09 and the standard deviation was approximately 10% (Figure 4-19). 

 

Figure 4-19.  Probability Distribution Function, Aluminum Model, Near-Buckling Load 
Case 

 

 Also, a cumulative distribution function was generated.  This predicted an 18% probability 

of failure at a limit state of 1.0.  This indicated that the randomness in the material was 18% likely 

to cause failure at the applied load.  Figure 4-20 depicts the cumulative distribution function. 
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Figure 4-20.  Cumulative Distribution Function, Aluminum Model, Near-Buckling Load 
Case 
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V. Conclusions and Recommendations  
 
 

Aerodynamic and Structural Coupling 

 This study demonstrated that this proposed sensor-craft configuration is a highly coupled, 

multi-disciplinary design.  The aerodynamic loads depend on the deformation of the structure.  As 

the joined-wing deforms the direction of the aerodynamic loads changes due to the deformation.  

Because of this change in direction the lift component of the aerodynamic pressure vector is 

altered.  To maintain the same magnitude of the lift component, the angle of attack must change.  

This creates an overall change in the pressure distribution of the wing.  The new aerodynamic load 

creates a new deformation of the joined-wing.  The new deformation creates a different stress 

distribution within the joined-wing structure.  The structural optimization process changes the 

material thicknesses to prevent an overstress condition.  This changes the overall weight of the 

sensor-craft. 

 The updated weight drives another change in the aerodynamic load requirements.  Also, 

as the weight varies, the total fuel required varies.  A change in fuel weight also changes the 

aerodynamic load requirements throughout the mission.  Any change in aerodynamic loads affects 

the aerodynamic stability and trim of the sensor-craft. 

 As the aerodynamic loads change due to deformation and mass variances, the trim 

condition for the sensor-craft also must change.  To meet the requirement for a new aerodynamic 

load the angle of attack and the aft-wing twist angle will change.  Because the twist of the aft-wing 

is an enforced twist from a manufactured shape, the twisting of the aft-wing generates additional 

stresses in the configuration.  This additional stress drives the structural optimization process to 
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change the material distribution to meet the allowable stress requirements.  The redistribution of 

mass affects the center of gravity of the vehicle.  This change of the center of gravity affects the 

overall mass balancing of the sensor-craft.  The payload location can be adjusted (Equation 3-30) 

to relocate the center of gravity to a more favorable location. 

 In this sensor-craft configuration, a change in deformation, weight, fuel required, angle of 

attack, aft-wing twist angle or payload location will affect the aerodynamic and structural 

characteristics of the vehicle.  Any change in the aerodynamic loads also has repercussions in trim, 

structural optimization, mass balancing, and structural deformation.  This model demonstrates the 

highly coupled nature of a joined-wing configuration. 

Non-Linear Analysis 

 Linear structural optimization of the aluminum model created a buckling safe design for all 

maneuver loads not including gust or ground impact loads.  Buckling is typically the first indication 

of non-linearity in the model.  However, as shown in Figure 4-7, the non-linear effects occur at a 

much lower load factor than the buckling load.  Although for the gust conditions, the buckling 

eigenvalue predicts a slightly higher onset of non-linear effects than the actual non-linear analysis 

(Figure 4-11).  Buckling is caused by compression.  The load applied to the joined-wing causes 

bending stresses in the forward and aft-wings.  The bending stress of the forward-wing is partially 

relieved through compression of the aft-wing.  The high buckling eigenvalues for the 2.5G 

maneuver loads indicate that a large bending stress must be applied to develop sufficient 

compression in the aft-wing to cause buckling.  The large bending stress is most likely the cause of 

the non-linearity in the joined-wing configuration.  Thus, buckling analysis of an optimized, linear 
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fully stressed design is insufficient to predict the onset of non-linear effects in this joined-wing 

configuration. 

 Non-linear analysis predicts a much higher deformation than the linear analysis for the 

aluminum model.  The larger deformations produce correspondingly larger stresses.  This drives 

the fully stressed design algorithm (Equation 3-9) to increase the element thicknesses to meet the 

allowable stress constraints.  Thus, the overall weight increases when non-linear analysis is 

included in the design optimization process.  For a large span, joined-wing configuration such as 

sensor-craft, non-linear analysis is critical to accurately capture the large deformations and 

stresses. 

Joined-Wing Structural Analysis 

 A joined-wing structure can not be intuitively analyzed.  Due to the offset of the aft-wing 

in the x and z directions, a load applied in the vertical direction will cause a deformation of the 

structure in the positive z direction and the negative x direction.  This forward bending of the 

joined-wing is due to the plane of bending not being aligned with the x-y plane.  The plane of 

bending is aligned with the plane of the joined-wing structure (Figure 2-1). 

 Also, the optimal design of the joined-wing box structure is not a uniform thickness cross-

section.  The mass should be placed as far away from the inclined plane of bending as possible.  

This requirement leads to the thickening of the upper leading edge and lower trailing edge (Figure 

2-2). 
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AVTIE Recommendations 

 The design philosophy of AVTIE has led to the creation of a very useful tool in analyzing 

a multi-disciplinary problem.  However, AVTIE contains limitations due to the software design.  

Currently AVTIE can not produce a structural analysis model other than the uniform thickness, 

aluminum model.  AVTIE must contain the ability to generate a distributed-thickness, multiple-

material structural model.  The designer should be able to designate materials for individual 

elements or a range of elements.  In addition, AVTIE must allow the user to select linear static, 

non-linear static, linear fully stressed design, or non-linear fully stressed design as the NASTRAN 

analysis method.  Finally, for future studies with this program, AVTIE should automatically 

perform aerodynamic trim and structural optimization iterations from a user defined model and 

flight conditions. 

 A final recommendation is to re-write AVTIE into a software language more widely used.  

Adaptive Modeling Language is not intuitive and has a steep learning curve associated with it.  

Also, the de-bugging and error message generator available in AML is unhelpful.  Thus, 

correcting errors in the object-oriented code becomes difficult in a very large program such as 

AVTIE. 

Model Recommendations  

 The structural model can be reduced to a two-spar design to reduce the redundant 

structure and the NASTRAN analysis time required.  Also, the number of ribs in the forward and 

aft-wings can be reduced.  This will produce a more realistic model of the sensor-craft 
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configuration.  A dynamic analysis of the landing and taxi impact loads should be performed to 

obtain an accurate applied load. 

Recommendations for Future Study 

 This highly coupled sensor-craft model can be geometrically optimized.  Variables such as 

wing sweep, joint-location, aft-wing x- and z-offset, and aft-wing dihedral can be varied to 

determine and optimum geometric configuration that is aerodynamically stable, mass balanced, 

buckling safe, and a minimum weight design.  Future studies can also quantify the sensitivities of 

the coupling effects.  This would provide a method of estimation for future joined-wing 

optimization studies. 
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Appendix A: 

AVTIE Interface and Configuration Files 

 

Figure A-1.  AVTIE User Interface Menu 
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Baseline -Configuration-V01.txt 
 
LABEL                                   BASELINE JOINED-
WING V03 - 100 foot length (vhf) 360 degree view (metric 
units) 
 
IB-SWEEP       30.0 DEG 
OB-SWEEP       30.0 DEG 
 
FUSELAGE-LENGTH                         30.0    M      
(controls mass model) 
 
FORWARD-FUSELAGE-WIDTH    1.25 M 
IB-SPAN       22.0 M 
JOINT-SPAN       4.0 M 
OB-SPAN       6.25 M 
WING-TIP-SPAN      1.75 M 
 
IB-FORE-DIHEDRAL     9.0 DEG 
OB-DIHEDRAL      9.0 DEG 
JOINT-DIHEDRAL      9.0 DEG 
 
AFT-ROOT-OFFSET-X     22.0 M 
AFT-ROOT-OFFSET-Z     7.0 M 
 
IB-FORE-WING-IB-CHORD    2.5 M 
IB-AFT-WING-IB-CHORD     2.5 M 
IB-FORE-WING-OB-CHORD    2.5 M 
IB-AFT-WING-OB-CHORD     2.5 M 
FORE-AFT-OFFSET-AT-JOINT    0.625 M 
WING-MERGE-SMOOTHNESS-FACTOR          3     
(0.5<WING-MERGE-SMOOTHNESS-FACTOR<3) 
OB-WING-IB-CHORD     2.5 M 
OB-WING-OB-CHORD     2.5 M 
IB-FORE-WING-IB-TWIST    0.0 DEG 
IB-FORE-WING-OB-TWIST    0.0 DEG 
IB-AFT-WING-IB-TWIST     0.0 DEG 
OB-WING-OB-TWIST     0.0 DEG 
 
GLOBAL-AIRFOIL      LRN-1015.txt            
fx-60-126-1.txt 
 
IB-FORE-WING-IB-AIRFOIL-THICKNESS  1.0 NO-DIM 
IB-FORE-WING-OB-AIRFOIL-THICKNESS  1.0 NO-DIM 
IB-AFT-WING-IB-AIRFOIL-THICKNESS  1.0 NO-DIM 
IB-AFT-WING-OB-AIRFOIL-THICKNESS  1.0 NO-DIM 
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OB-WING-IB-AIRFOIL-THICKNESS   1.0 NO-DIM 
OB-WING-OB-AIRFOIL-THICKNESS   1.0 NO-DIM 
 
FEM-SPAN-PARTITIONS     4 4 12 4 8 4 12 
FEM-CHORD-PARTITIONS     8 6 8 
  
AERO-SPAN-PARTITIONS     2 2  6 2 7 2 12 
AERO-CHORD-PARTITIONS    10 6 10 
 
SURFACE-SPAN-PARTITIONS    2 2 12 2 4 2 12 
SURFACE-CHORD-PARTITIONS    4 3 4 
 
END 
 
 
Baseline -Weights-V02.txt 
 
LABEL                                   BASELINE JOINED-WING V03 - 100 foot length (vhf) 360 
degree view (metric units) 
 
ACCELERATION-DUE-TO-GRAVITY    9.8  
 M/S^2 (USED TO CONVERT BETWEEN MASS AND WEIGHT) 
DEFAULT-STRUCTURAL-ELEMENT-THICKNESS  2.54e-03 M 
 
ENGINE-LOCATION-X   nil   M (TBD) 
ENGINE-LOCATION-Z   0.0   M (TBD) 
 
FUSELAGE-BLACK-BOX-MASS   3550.1   KG (TBD) 
FUSELAGE-BLACK-BOX-LOCATION-X  -2.0   M (TBD) 
FUSELAGE-BLACK-BOX-LOCATION-Z  1.0   M (TBD) 
 
FUSELAGE-STRUCTURE-LOCATION-X  25.0   M (TBD) 
FUSELAGE-STRUCTURE-LOCATION-Z  0.0   M (TBD) 
 
VERTICAL-TAIL-STRUCTURE-MASS  100.0   KG (TBD) 
VERTICAL-TAIL-STRUCTURE-LOCATION-X nil   M (TBD) 
VERTICAL-TAIL-STRUCTURE-LOCATION-Z nil   M (TBD) 
 
FUEL-DENSITY                          810.0   kg/m^3  for kerosene 
 
FUEL-FUSELAGE-MASS   0.0   KG (TBD) 
FUEL-FUSELAGE-LOCATION-X  nil   M (TBD) 
FUEL-FUSELAGE-LOCATION-Z  nil   M (TBD) 
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WING-STRUCTURE-MASS-IN-MISSION             7680              KG (first 
estimate and then update as real wing weight is recursively converged) 
END 
 
 
 
 
 
 
Aluminum-Metric.txt 
 
LABEL                                 BASELINE JOINED-WING V03 - 100 foot length (vhf) 360 
degree view (metric units) 
 
MATERIAL-E11      7.240e+10  Pa 
MATERIAL-E66      2.758e+10  Pa 
MATERIAL-DENSITY         2768.0       kg/m^3 
MATERIAL-STRESS-TENSION-ALLOWABLE  1.034e+08  Pa 
MATERIAL-STRESS-COMPRESSION-ALLOWABLE 1.034e+08  Pa 
MATERIAL-STRESS-SHEAR-ALLOWABLE  5.516e+07  Pa 
 
END 
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Appendix B: 

AVTIE Procedures 

 Mouse buttons are defined as:  

  [LMB]:  Left Mouse Button 
  [MMB]: Middle Mouse Button 

  [RMB]:  Right Mouse Button 
 

AVTIE Initial Rigid Trim Process 
 
1. Open AML 3.3 from the desktop.  [LMB] OK 

2. [LMB] My AML Utilities 

3. [LMB] LOAD AVTIE.  Wait for AML Editor Window message: AVTIE Loaded! 

4. [LMB] AVTIE DESKTOP 

5. [LMB] AFRL/AFIT Joined-Wing DOE 

6. [MMB] Delete Current 

7. [LMB] Create New/Point Old 

8. [LMB] Select Config File 

9. [LMB] desired file in Save Window  Ex: baseline-configuration-v01.txt 

10. [LMB] Select Material File 

11. [LMB] desired file in Save Window  Ex:  aluminum-metric.txt 

12. [LMB] Select Mass File 

13. [LMB] desired file in Save Window  Ex:  baseline-weights-v01.txt 

14. [LMB] Read Config File 
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15. [LMB] Read Material File 

16. [LMB] Read Mass File 

17. In window right of Update Mission Leg, enter Mission Leg integer (0, 1, or 2) 

18. [LMB] Update Mission Leg 

19. In window right of Update Mission Leg Fraction, enter Leg Fraction (Ex: 0.50) 

20. [LMB] Update Mission Leg Fraction 

21. Enter desired load factor into the box to the right of Update Maneuver Load (NZ). 

22. [LMB] Update Maneuver Load (NZ) 

23. [LMB] Update AoA + Spread 

24. [LMB] Update Twist + Spread 

25. [LMB] Gen Stability Aero Table  (this will take approximately five minutes) 

26. [LMB] Update Weight Printout 

27. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 

 
28. [MMB] Update AoA + Spread 

29. [LMB] Update AoA + Spread 

30. [MMB] Update Twist + Spread 

31. [LMB] Update Twist + Spread 

32. [LMB] Gen PanAir Input 

33. [LMB] Run PanAir 

34. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 
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35. Repeat Steps 28 – 34 until AoA and Twist values do not change. 
 
36. Subtract the Jig Shape (Jig Shape is defined by the user) from the Twist angle. 
 
37. Enter the new value into the box below Update Flex Twist Angle. 
 
38. [LMB] Update Flex Twist Angle 
 
39. Enter Jig Shape into the box to the right of Update Twist + Spread. 
 
40. [LMB] Update AoA + Spread 
 
41. [LMB] Update Twist + Spread 
 
42. [LMB] Gen NASTRAN Input.  This will generate a Linear Static NASTRAN model with 

the gravity and aerodynamic loads.  Flexible twist will be enforced in the aft-wing. 
 
 
AVTIE Flexible Trim Process 
 
1. Open AML 3.3 from the desktop.  [LMB] OK 

2. [LMB] My AML Utilities 

3. [LMB] LOAD AVTIE.  Wait for AML Editor Window message: AVTIE Loaded! 

4. [LMB] AVTIE DESKTOP 

5. [LMB] AFRL/AFIT Joined-Wing DOE 

6. [MMB] Delete Current 

7. [LMB] Create New/Point Old 

8. [LMB] Select Config File 

9. [LMB] desired file in Save Window  Ex: baseline-configuration-v01.txt 

10. [LMB] Select Material File 

11. [LMB] desired file in Save Window  Ex:  aluminum-metric.txt 
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12. [LMB] Select Mass File 

13. [LMB] desired file in Save Window  Ex:  baseline-weights-v01.txt 

14. [LMB] Read Config File 

15. [LMB] Read Material File 

16. [LMB] Read Mass File 

17. In window right of Update Mission Leg, enter Mission Leg integer (0, 1, or 2) 

18. [LMB] Update Mission Leg 

19. In window right of Update Mission Leg Fraction, enter Leg Fraction (Ex: 0.50) 

20. [LMB] Update Mission Leg Fraction 

21. [LMB] Increment FEM Analysis Step 

22. [LMB] Read NASTRAN Disp 

23. [LMB] Read NASTRAN Thick 

24. Steps 22 and 23 will read jw_displacement.punch and jw_thickness.punch 

25. [LMB] Update Weight Printout 

26. Enter Wing Structure Mass value into wing-mass-initial-guess variable in avo-joined-wing-
right object. 

 
27. [LMB] Update Weight Printout 
 
28. Enter desired load factor into the box to the right of Update Maneuver Load (NZ). 

29. [LMB] Update Maneuver Load (NZ) 

30. [MMB] Develop Flex Loads? 

31. [LMB] Update AoA + Spread 

32. [LMB] Update Twist + Spread 
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33. [LMB] Gen Stability Aero Table  (this will take approximately five minutes) 

34. [LMB] Update Weight Printout 

35. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 

 
36. [MMB] Update AoA + Spread 

37. [LMB] Update AoA + Spread 

38. [MMB] Update Twist + Spread 

39. [LMB] Update Twist + Spread 

40. [LMB] Gen PanAir Input 

41. [LMB] Run PanAir 

42. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 

 
43. Repeat Steps 36 – 42 until AoA and Twist values do not change. 
 
44. Subtract the Jig Shape (Jig Shape is defined by the user) from the Twist angle. 
 
45. Enter the new value into the box below Update Flex Twist Angle. 
 
46. [LMB] Update Flex Twist Angle 
 
47. Enter Jig Shape into the box to the right of Update Twist + Spread. 
 
48. [LMB] Update AoA + Spread 
 
49. [LMB] Update Twist + Spread 
 
50. [LMB] Gen NASTRAN Input.  This will generate a Linear Static NASTRAN model with 

the gravity and aerodynamic loads.  Flexible twist will be enforced in the aft-wing. 
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Multiple Load Case Flexible Trim 
 
Below is an alternate method when flexible trim is needed for several mission cases using the same 
thickness file. 
 
1. Open AML 3.3 from the desktop.  [LMB] OK 

2. [LMB] My AML Utilities 

3. [LMB] LOAD AVTIE.  Wait for AML Editor Window message: AVTIE Loaded! 

4. [LMB] AVTIE DESKTOP 

5. [LMB] AFRL/AFIT Joined-Wing DOE 

6. [MMB] Delete Current 

7. [LMB] Create New/Point Old 

8. [LMB] Select Config File 

9. [LMB] desired file in Save Window  Ex: baseline-configuration-v01.txt 

10. [LMB] Select Material File 

11. [LMB] desired file in Save Window  Ex:  aluminum-metric.txt 

12. [LMB] Select Mass File 

13. [LMB] desired file in Save Window  Ex:  baseline-weights-v01.txt 

14. [LMB] Read Config File 

15. [LMB] Read Material File 

16. [LMB] Read Mass File 

17. In window right of Update Mission Leg, enter Mission Leg integer (0, 1, or 2) 

18. [LMB] Update Mission Leg 

19. In window right of Update Mission Leg Fraction, enter Leg Fraction (Ex: 0.50) 
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20. [LMB] Update Mission Leg Fraction 

21. Enter known Wing Structure Mass value into wing-mass-initial-guess variable in avo-
joined-wing-right object. 

 
22. [LMB] Update Weight Printout 
 
23. Enter desired load factor into the box to the right of Update Maneuver Load (NZ). 

24. [LMB] Update Maneuver Load (NZ) 

25. [MMB] Develop Flex Loads? 

26. [LMB] Update AoA + Spread 

27. [LMB] Update Twist + Spread 

28. [LMB] Gen Stability Aero Table  (this will take approximately five minutes) 

29. In AML Editor Window, enter the following line: 

30. [LMB] Step Through Analysis 

Develop Gust Loads 

Below is  the procedure to develop gust loads.  Special care must be taken to ensure all steps are followed in 
the exact order listed here. 

 
1. Open AML 3.3 from the desktop.  [LMB] OK 

2. [LMB] My AML Utilities 

3. [LMB] LOAD AVTIE.  Wait for AML Editor Window message: AVTIE Loaded! 

4. [LMB] AVTIE DESKTOP 

5. [LMB] AFRL/AFIT Joined-Wing DOE 

6. [MMB] Delete Current 

7. [LMB] Create New/Point Old 
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8. [LMB] Select Config File 

9. [LMB] desired file in Save Window  Ex: baseline-configuration-v01.txt 

10. [LMB] Select Material File 

11. [LMB] desired file in Save Window  Ex:  aluminum-metric.txt 

12. [LMB] Select Mass File 

13. [LMB] desired file in Save Window  Ex:  baseline-weights-v01.txt 

14. [LMB] Read Config File 

15. [LMB] Read Material File 

16. [LMB] Read Mass File 

17. In window right of Update Mission Leg, enter Mission Leg integer (0, 1, or 2) 

18. [LMB] Update Mission Leg 

19. In window right of Update Mission Leg Fraction, enter Leg Fraction (Ex: 0.50) 

20. [LMB] Update Mission Leg Fraction 

21. Enter desired load factor into the box to the right of Update Maneuver Load (NZ). 

22. [LMB] Update Maneuver Load (NZ) 

23. Enter known Wing Structure Mass value into wing-mass-initial-guess variable in avo-
joined-wing-right object. 

 
24. Enter known dynamic pressure value into dynamic-pressure variable in avo-joined-wing-right 

object. 
 
25. [LMB] Update Weight Printout 
 
26. [LMB] Increment FEM Analysis Step 

27. If jw_displacement.punch file available, [LMB] Read NASTRAN Disp 
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28. If jw_thickness.punch file available, [LMB] Read NASTRAN Thick 

29. [LMB] Update Weight Printout 

30. If step 27 was executed, [MMB] Develop Flex Loads? 

31. [LMB] Gen Stability Aero Table  (this will take approximately five minutes) 

32. [LMB] Update Weight Printout 

33. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 

 
34. [MMB] Update AoA + Spread 

35. [LMB] Update AoA + Spread 

36. [MMB] Update Twist + Spread 

37. [LMB] Update Twist + Spread 

38. [LMB] Gen PanAir Input 

39. [LMB] Run PanAir 

40. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 

 
41. Repeat Steps 34 – 40 until AoA and Twist values do not change. 
 
42. Subtract the Jig Shape (Jig Shape is defined by the user) from the Twist angle. 
 
43. Enter the new value into the box below Update Flex Twist Angle. 
 
44. [LMB] Update Flex Twist Angle 
 
45. Enter Jig Shape into the box to the right of Update Twist + Spread. 
 
46. [LMB] Update AoA + Spread 
 
47. [LMB] Update Twist + Spread 
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48. [LMB] Gen NASTRAN Input.  This will generate a Linear Static NASTRAN model with 
the gravity and aerodynamic loads.  Flexible twist will be enforced in the aft-wing. 

 
49. Transfer NASTRAN file to folder containing gusttrim1g.m file and mpfsdelement.pch file. 
 
50. Start MATLAB 
 
51. Execute gusttrim1g.m.  This will create a jw_displacement.punch file 
 
52. Transfer the jw_displacement.punch to the AVTIE/…/av-astros-data directory 
 
53. [LMB] Increment FEM Analysis Step 

54. [LMB] Read NASTRAN Disp 
 
55. [LMB] Read NASTRAN Thick 
 
56. [LMB] Update Weight Printout 
 
57. [MMB] Develop Flex Loads? 
 
58. [LMB] Gen Stability Aero Table  (this will take approximately five minutes) 

59. [LMB] Update Weight Printout 

60. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 

 
61. [MMB] Update AoA + Spread 

62. [LMB] Update AoA + Spread 

63. [MMB] Update Twist + Spread 

64. [LMB] Update Twist + Spread 

65. [LMB] Gen PanAir Input 

66. [LMB] Run PanAir 

67. [LMB] Trim Aero at Mass Ctr  (values in the third column to the right of Update AoA + 
Spread and Update Twist + Spread will change) 
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68. Repeat Steps 60 – 67 until AoA and Twist values do not change. 
 
69. Add the ?a value calculated from equation 3-4 to the angle of attack. 
 
70. [MMB] Update AoA + Spread 

71. [LMB] Gen PanAir Input 

72. [LMB] Run PanAir 
 
73. CAUTION:  Do NOT Trim Aero at Mass Ctr at this point! 
 
74. Subtract the Jig Shape (Jig Shape is defined by the user) from the Twist angle. 
 
75. Enter the new value into the box below Update Flex Twist Angle. 
 
76. [LMB] Update Flex Twist Angle 
 
77. Enter Jig Shape into the box to the right of Update Twist + Spread. 
 
78. [LMB] Update AoA + Spread 
 
79. [LMB] Update Twist + Spread 
 
80. [LMB] Gen NASTRAN Input.  This will generate a Linear Static NASTRAN model with 

the gravity and gust aerodynamic loads.  Flexible twist will be enforced in the aft-wing. 
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Appendix C: 

Additional Results 

 The gust loads were initially added to the linear optimized and trimmed aluminum model 

(Table C-1). 

Iteration Wing Structure 
(kg) 

Gross Take-Off 
(kg) 

7 6250 38504 
8 6219 38474 

Table C-1.  Optimized Mass at Linear Structural Iterations, Including Gust Loads 

Including the critical gust load conditions increased the optimized mass approximately 2400 kg.  

However, in this instance, the model was trimmed to a 1G flight condition using the deformations 

created by the gust condition.  This produced incorrect aerodynamic loads, but still converged to 

a minimum weight design.  Again, the fuel requirement was not recalculated. 

 Table C-2 lists the final optimized trim conditions using non-linear analysis.  These 

aerodynamic conditions were developed through AVTIE flexible trim. 

Mission Leg 
and Fraction 

Aerodynamic 
Load Factor 

Angle of Attack Aft-Wing 
Twist 

0.00 2.5G 10.68 7.72 
0.50 2.5G 9.12 7.43 
1.00 2.5G 21.02 13.6 
1.50 2.5G 14.23 13.3 
2.00 2.5G 1.29 5.44 
2.50 2.5G 0.62 5.24 
2.98 2.5G -0.02 5.06 
2.98 3.34G 0.29 -0.70 
2.98 3.42G 1.57 -0.10 

Table C-2.  Final Aerodynamic Trim Conditions, All Flight Loads 
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